212 research outputs found

    The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study

    Get PDF
    Previous studies in nonhuman primates and cats have shown that the pulvinar receives input from various cortical and subcortical areas involved in vision. Although the contribution of the pulvinar to human vision remains to be established, anatomical tracer and electrophysiological animal studies on cortico-pulvinar circuits suggest an important role of this structure in visual spatial attention, visual integration, and higher-order visual processing. Because methodological constraints limit investigations of the human pulvinar's function, its role could, up to now, only be inferred from animal studies. In the present study, we used an innovative imaging technique, Diffusion Tensor Imaging (DTI) tractography, to determine cortical and subcortical connections of the human pulvinar. We were able to reconstruct pulvinar fiber tracts and compare variability across subjects in vivo. Here we demonstrate that the human pulvinar is interconnected with subcortical structures (superior colliculus, thalamus, and caudate nucleus) as well as with cortical regions (primary visual areas (area 17), secondary visual areas (area 18, 19), visual inferotemporal areas (area 20), posterior parietal association areas (area 7), frontal eye fields and prefrontal areas). These results are consistent with the connectivity reported in animal anatomical studies

    Are supramodality and cross-modal plasticity the yin and yang of brain development? From blindness to rehabilitation

    Get PDF
    Research in blind individuals has primarily focused for a long time on the brain plastic reorganization that occurs in early visual areas. Only more recently, scientists have developed innovative strategies to understand to what extent vision is truly a mandatory prerequisite for the brain’s fine morphological architecture to develop and function. As a whole, the studies conducted to date in sighted and congenitally blind individuals have provided ample evidence that several β€˜visual’ cortical areas develop independently from visual experience and do process information content regardless of the sensory modality through which a particular stimulus is conveyed: a property named supramodality. At the same time, lack of vision leads to a structural and functional reorganization within 'visual' brain areas, a phenomenon known as cross-modal plasticity. Cross-modal recruitment of the occipital cortex in visually deprived individuals represents an adaptative compensatory mechanism that mediates processing of non-visual inputs. Supramodality and cross-modal plasticity appear to be the 'yin and yang' of brain development: supramodal is what takes place despite the lack of vision, whereas cross-modal is what happens because of lack of vision. Here we provide a critical overview of the research in this field and discuss the implications that these novel findings have for the development of educative/rehabilitation approaches and sensory substitution devices in sensory-impaired individuals

    Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    Get PDF
    Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation

    Editorial Physiology and Plasticity of Interhemispheric Connections

    Get PDF
    The corpus callosum (CC for aficionados) is the largest fiber bundle in the brain and establishes connections between the hemispheres, and predominantly, but not solely, between the cortical areas. Functionally mysterious for a long time, it shared with the pineal gland the honor of being considered the site of the soul M. Fabri and G. Polonara provide a functional map of callosal topography by charting the BOLD signal evoked in callosal axons by taste, tactile, auditory, and visual stimuli and by motor tasks. This approach is at the frontier of what is usually obtained from BOLD signals. It provides results that are compatible with what is predicted by anatomy in the case of axons originating from primary areas, but it also shows activations that could not have been predicted from anatomy, probably due to axons originating in multisensory areas. K. E. Schmidt finds that, in the visual cortex, CC connections have a multiplicative shift of the responses and this is an interesting finding that goes beyond the old debate of whether callosal connections are excitatory or inhibitory. The finding is placed within the frame of the historical question of the general nature of callosal connections. Hubel and Wiesel V. BeaulΓ© et al. focus on the role of CC connections in disentangling bilateral manual movements. From juvenile, to adult, to pathological conditions, the degrees of manual independence are differently modulated and this may be due to inhibitory action of callosal connections. Interestingly, inhibition between the hemispheres has been repeatedly reported for the motor functions, particularly in 2 Neural Plasticity man, although it has been observed in the visual cortex as well, where it seems to be quickly overridden by the excitatory interactions Over the last 30 years, developmental work on the CC has focused on three main themes: (i) the molecular mechanisms of axonal guidance between the hemispheres, (ii) the establishment of topographical connections, and (iii) the role of activity in the development of the connections. M. Nishikimi et al. review the first of the above themes, with special attention to the midline structures and neighboring axons. They also describe alterations in these navigational mechanisms that result in callosal dysgenesis in humans and mice. Y. Tagawa and T. Hirano review the last of the above issues and provide information on the molecular mechanisms by which spontaneous activity sculpts callosal projections. They conclude that both presynaptic and postsynaptic neuronal activities are critically involved in callosal axon development, and discuss the intracellular signaling pathways that work downstream of neuronal firing. It may be added that the overproduction and elimination of axons in development are central to the second of the themes above and continue to provide testable hypotheses on the nature of developmental plasticity of cortical connectivity Noninvasive structural and functional imaging techniques are taking an increasingly large share of brain studies, but this raises the question of how novel and more traditional, firmly established methodologies map onto each other. The CC is practically unavoidable in non-invasive structural studies, and, therefore, it can provide some general answers because of its central position in the brain, its relative "simplicity" and the amount of anatomical and functional information available. J. F. Olavarria et al. relate the critical period of callosal development, as defined by the reorganization of visual callosal connections caused by early enucleation, to the development of water diffusion parameters. This is important new information that complements the view that callosal plasticity relates to axonal maturation and differentiation. M. G. Knyazeva places callosal maturation as estimated by MRI and coherence EEG analysis, within the context of excitatory and inhibitory interactions between the hemispheres. P. Mathew et al. report data in preterm infants showing a relation between motor-specific scores and fractional anisotropy of anterior midbody of CC, the region where axons interconnecting motor areas course. Finally N. Takeuchi et al. introduce the concept of adult CC plasticity that might be elicited by trans-cranial stimulation in humans. They also discuss the use of brain stimulation techniques as a possible rehabilitation strategy to reinstate interhemispheric balance in patients with stroke

    Thalamocortical Connectivity and Microstructural Changes in Congenital and Late Blindness

    Get PDF
    There is ample evidence that the occipital cortex of congenitally blind individuals processes nonvisual information. It remains a debate whether the cross-modal activation of the occipital cortex is mediated through the modulation of preexisting corticocortical projections or the reorganisation of thalamocortical connectivity. Current knowledge on this topic largely stems from anatomical studies in animal models. The aim of this study was to test whether purported changes in thalamocortical connectivity in blindness can be revealed by tractography based on diffusion-weighted magnetic resonance imaging. To assess the thalamocortical network, we used a clustering method based on the thalamic white matter projections towards predefined cortical regions. Five thalamic clusters were obtained in each group representing their cortical projections. Although we did not find differences in the thalamocortical network between congenitally blind individuals, late blind individuals, and normal sighted controls, diffusion tensor imaging (DTI) indices revealed significant microstructural changes within thalamic clusters of both blind groups. Furthermore, we find a significant decrease in fractional anisotropy (FA) in occipital and temporal thalamocortical projections in both blind groups that were not captured at the network level. This suggests that plastic microstructural changes have taken place, but not in a degree to be reflected in the tractography-based thalamocortical network

    Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of treatment in hemianopic patients to restore missing vision is controversial. So far, successful techniques require laborious stimulus presentation or restrict improvements to selected visual field areas. Due to the large number of brain-damaged patients suffering from visual field defects, there is a need for an efficient automated treatment of the total visual field.</p> <p>Methods</p> <p>A customized treatment was developed for the reaction perimeter, permitting a time-saving adaptive-stimulus presentation under conditions of maximum attention. Twenty hemianopic patients, without visual neglect, were treated twice weekly for an average of 8.2 months starting 24.2 months after the insult. Each treatment session averaged 45 min in duration.</p> <p>Results</p> <p>In 17 out of 20 patients a significant and stable increase of the visual field size (average 11.3Β° Β± 8.1) was observed as well as improvement of the detection rate in the defective visual field (average 18.6% Β± 13.5). A two-factor cluster analysis demonstrated that binocular treatment was in general more effective in augmenting the visual detection rate than monocular. Four out of five patients with a visual field increase larger than 10Β° suffered from hemorrhage, whereas all seven patients with an increase of 5Β° or less suffered from infarction. Most patients reported that visual field restoration correlated with improvement of visual-related activities of daily living.</p> <p>Conclusion</p> <p>Rehabilitation treatment with the Lubeck Reaction Perimeter is a new and efficient method to restore part of the visual field in hemianopia. Since successful transfer of treatment effects to the occluded eye is achieved under monocular treatment conditions, it is hypothesized that the damaged visual cortex itself is the structure in which recovery takes place.</p

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Uncovering a role for the dorsal hippocampal commissure in recognition memory

    Get PDF
    The dorsal hippocampal commissure (DHC) is a white matter tract that provides interhemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted magnetic resonance imaging (DW-MRI) and white matter tractography to reconstruct the DHC in both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate a close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived diffusion tensor MRI metrics from the DHC in a large sample of human subjects to investigate whether interindividual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC correlated with performance in a standardized recognition memory task, an effect that was not reproduced in a comparison commissure tractβ€”the anterior commissure. These findings highlight a potential role for the DHC in recognition memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease

    Upregulation of Barrel GABAergic Neurons Is Associated with Cross-Modal Plasticity in Olfactory Deficit

    Get PDF
    Background: Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented. Methodology/Principal Findings: Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells. Conclusion/Significance: The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeuti
    • …
    corecore